Fast CQ Evaluation

Advanced Topics in Foundations of Databases, University of Edinburgh, 2019/20

Complexity of CQ

Theorem: It holds that:

- BQE(**CQ**) is NP-complete (combined complexity)
- BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
- BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) \rightarrow terms(D)

Verify that h is a match of Q in D, i.e., h(body) $\subseteq D$

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC)

Complexity of CQ

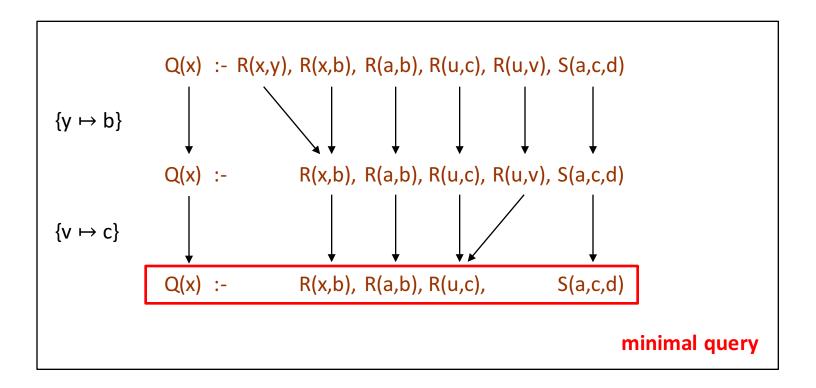
Theorem: It holds that:

- BQE(**CQ**) is NP-complete (combined complexity)
- BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
- BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Evaluating a CQ Q over a database D takes time $|D|^{O(|Q|)}$

Minimizing Conjunctive Queries

- Database theory has developed principled methods for optimizing CQs:
 - Find an equivalent CQ with minimal number of atoms (the core)
 - Provides a notion of "true" optimality



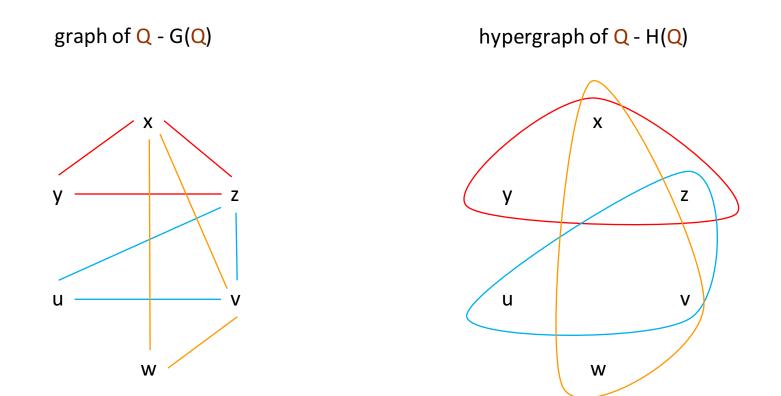
Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

- "Good" classes of CQs for which query evaluation is tractable (*in combined complexity*):
 - Graph-based
 - Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q :- R(x,y,z), R(z,u,v), R(v,w,x)



"Good" Classes of Conjunctive Queries

measures how close a graph is to a tree

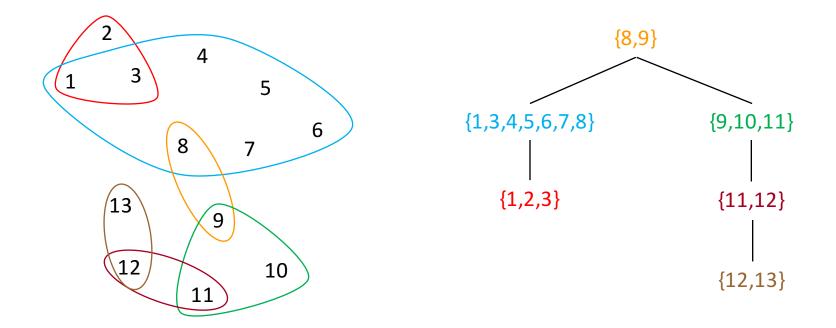
• Graph-based

- CQs of bounded treewidth - their graph has bounded treewidth

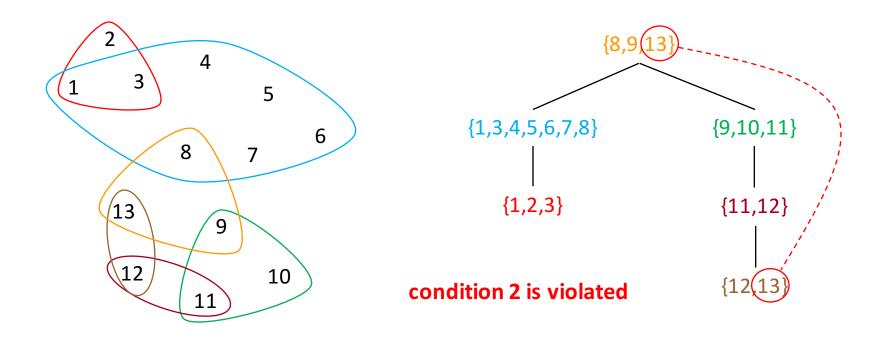
measures how close a hypergraph is to an acyclic one

- Hypergraph-based:
 - CQs of bounded hypertree width their hypergraph has bounded hypertree width
 - Acyclic CQs their hypergraph has hypertree width 1

- A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:
 - 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
 - For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

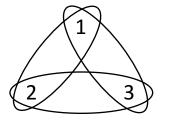


- A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:
 - 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
 - 2. For each node $u \in V$ of **H**, the set $\{n \in N \mid u \in \lambda(n)\}$ induces a *connected* subtree of **T**



- A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:
 - 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
 - 2. For each node $u \in V$ of **H**, the set $\{n \in N \mid u \in \lambda(n)\}$ induces a *connected* subtree of **T**

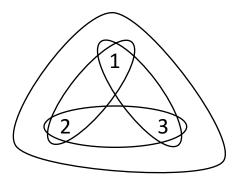
• **Definition:** A hypergraph is acyclic if it has a join tree



prime example of a cyclic hypergraph

- A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:
 - 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
 - 2. For each node $u \in V$ of **H**, the set $\{n \in N \mid u \in \lambda(n)\}$ induces a *connected* subtree of **T**

• **Definition:** A hypergraph is acyclic if it has a join tree



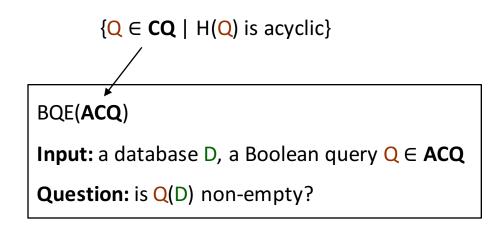
but this is acyclic

Relevant Algorithmic Tasks

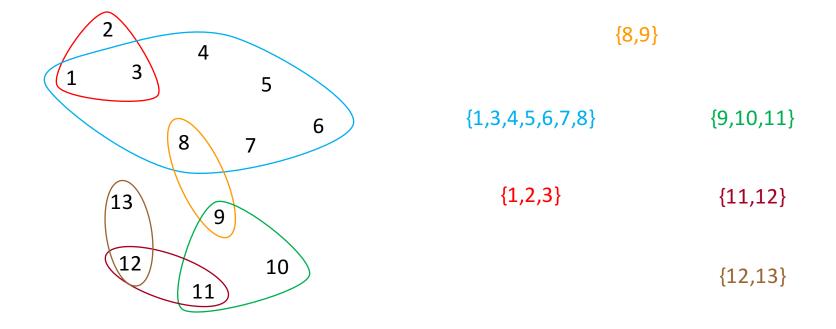
ACYCLICITY

Input: a query $\mathbf{Q} \in \mathbf{CQ}$

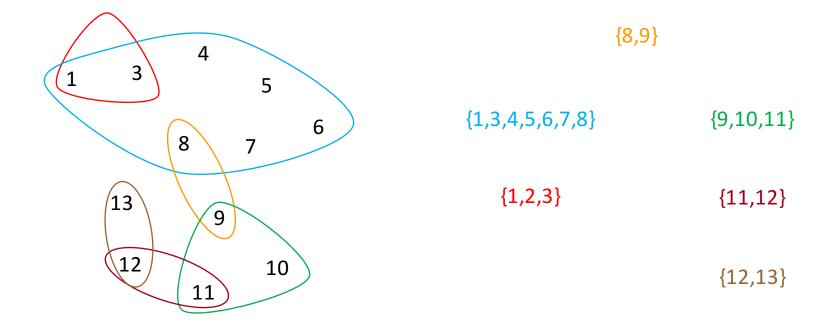
Question: is **Q** acyclic? or is H(**Q**) acyclic?



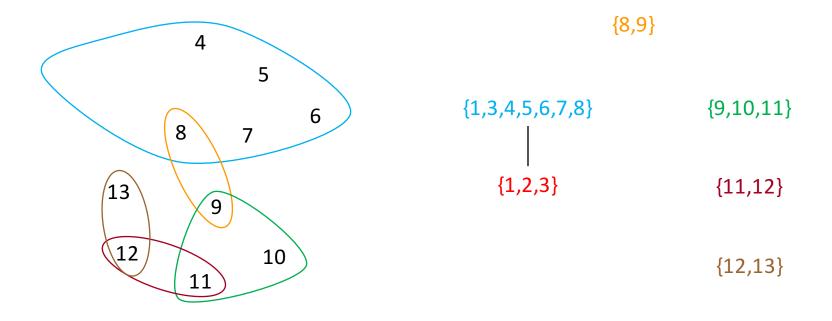
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



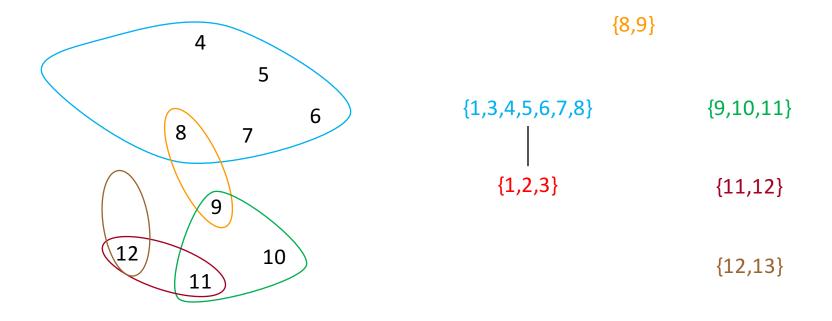
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



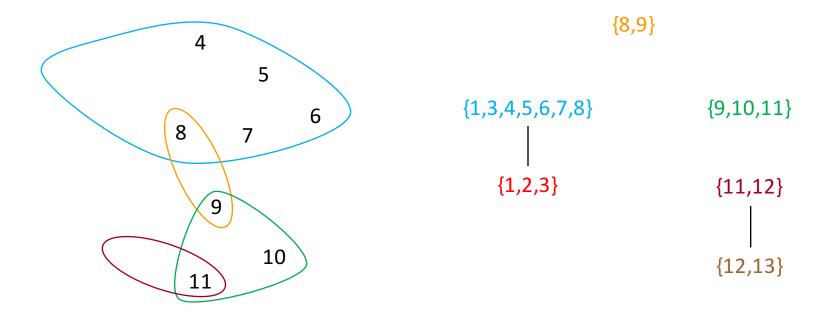
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



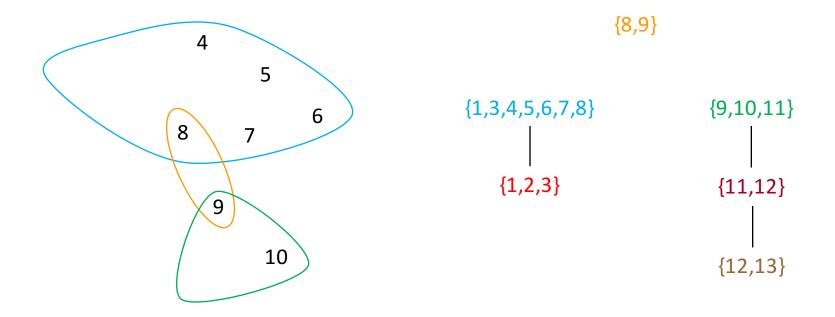
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



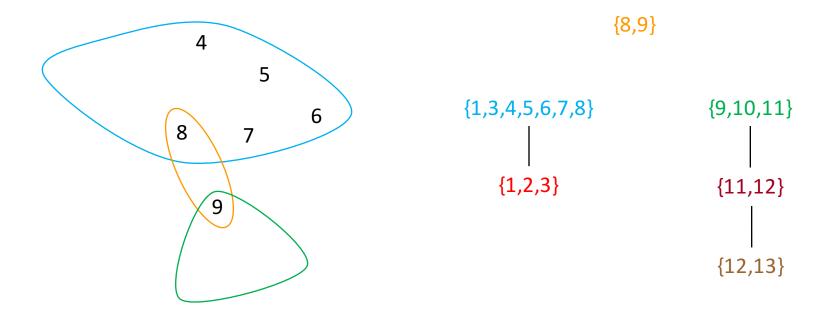
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



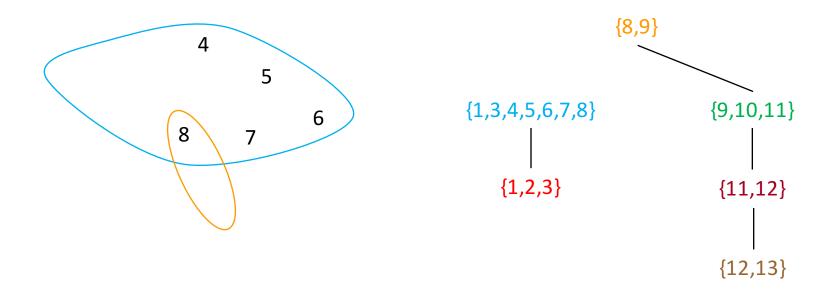
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



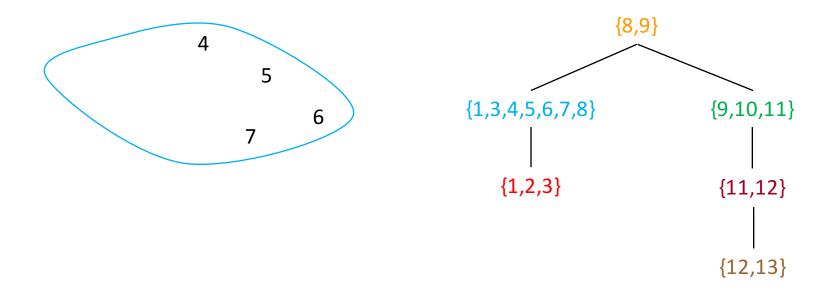
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



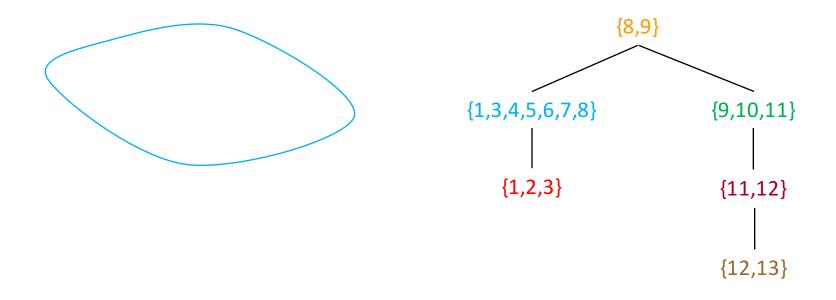
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



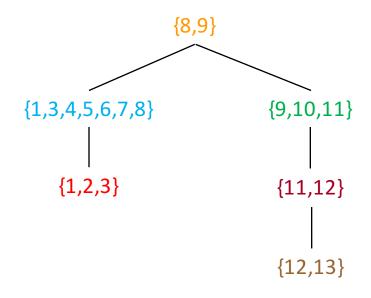
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph **H** is acyclic iff $GYO(H) = \emptyset$

₩

checking whether **H** is acyclic is feasible in polynomial time, and if it is

the case, a join tree can be found in polynomial time

₩

Theorem: ACYCLICITY is in PTIME

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(|Q|)

linear time in the size Q

Evaluating Acyclic CQs

Theorem: BQE(ACQ) is in PTIME

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time $O(|D| \cdot |Q|)$ linear time in the size of D and Q

Yannakaki's Algorithm

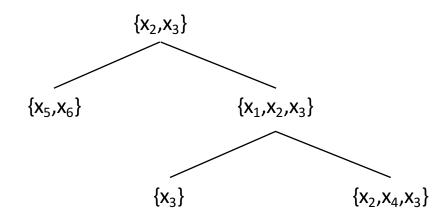
Dynamic programming algorithm over the join tree

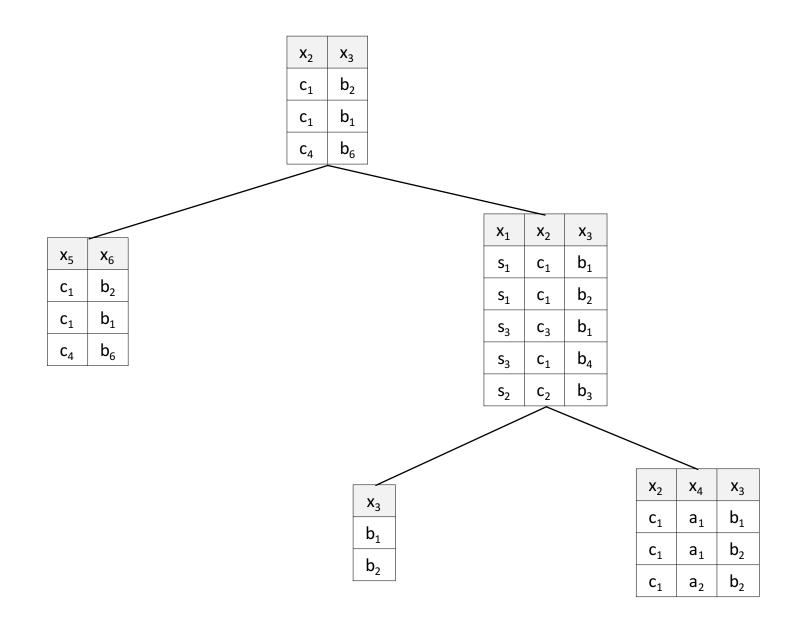
Given a database D, and an acyclic Boolean CQ Q

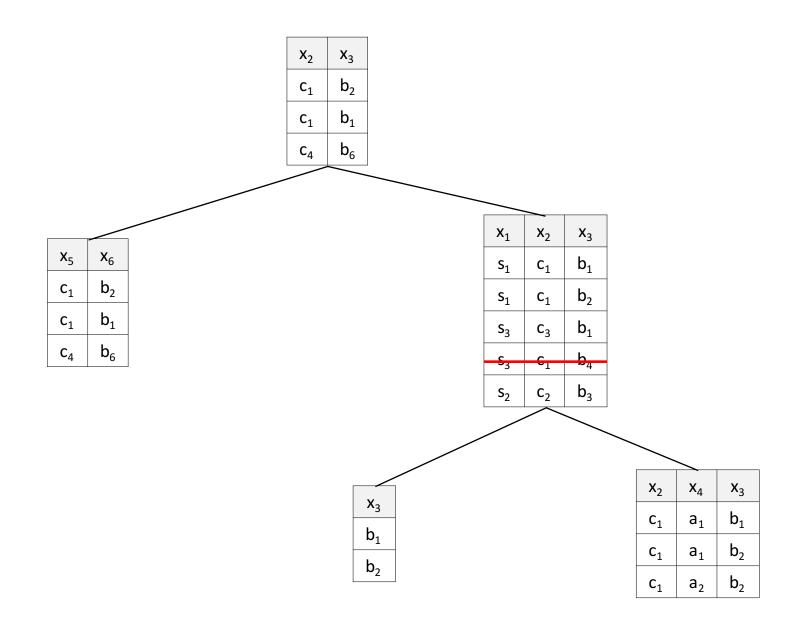
- 1. Compute the join tree **T** of H(**Q**)
- 2. Assign to each node of **T** the corresponding relation of D
- 3. Compute semi-joins in a bottom up traversal of **T**
- 4. Return YES if the resulting relation at the root of **T** is non-empty;

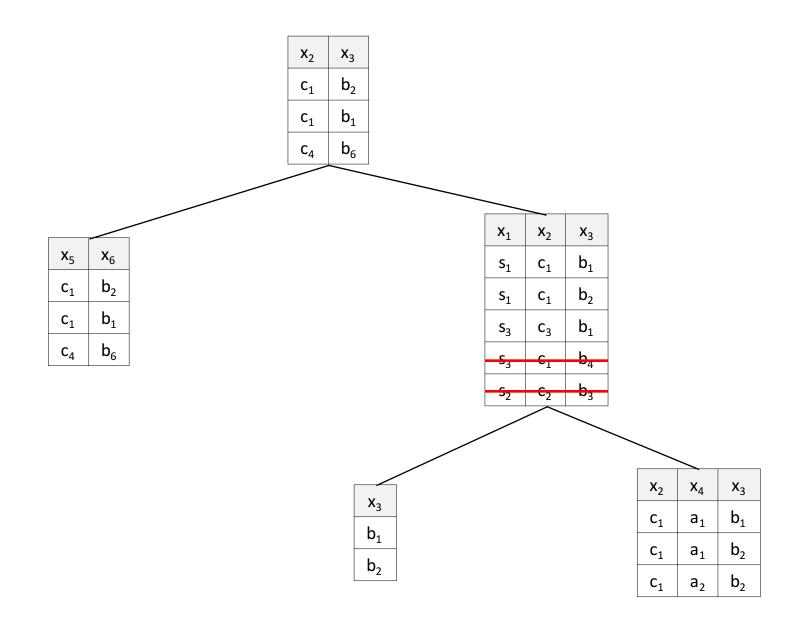
otherwise, return NO

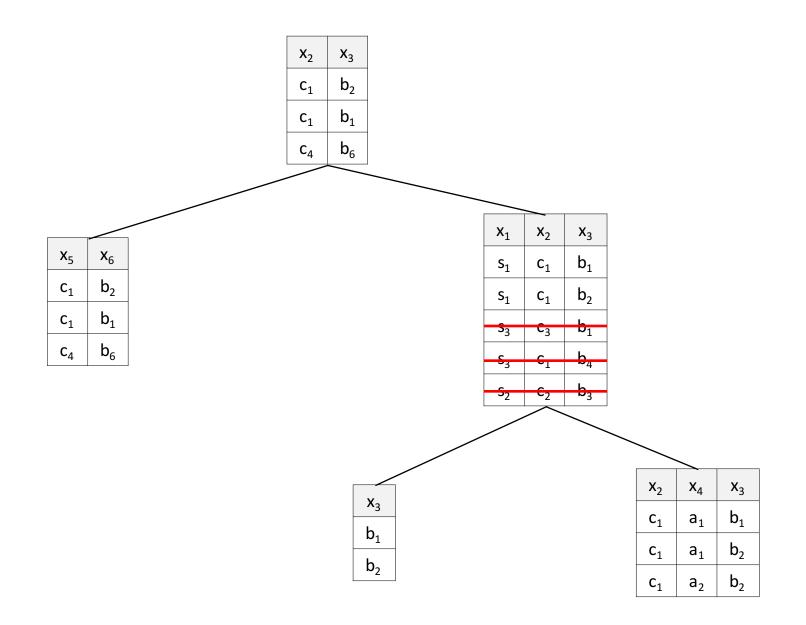
Q :- $R_1(x_1,x_2,x_3)$, $R_2(x_2,x_3)$, $R_2(x_5,x_6)$, $R_3(x_3)$, $R_4(x_2,x_4,x_3)$

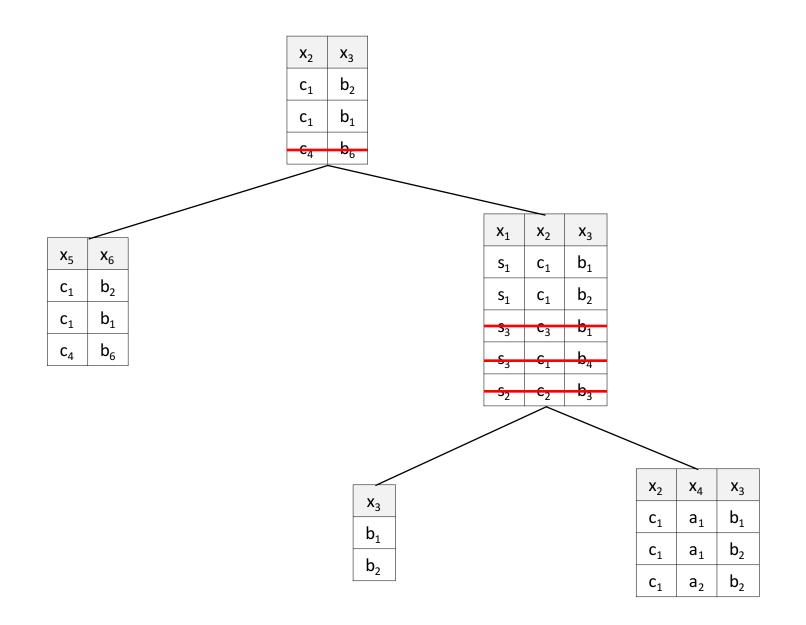


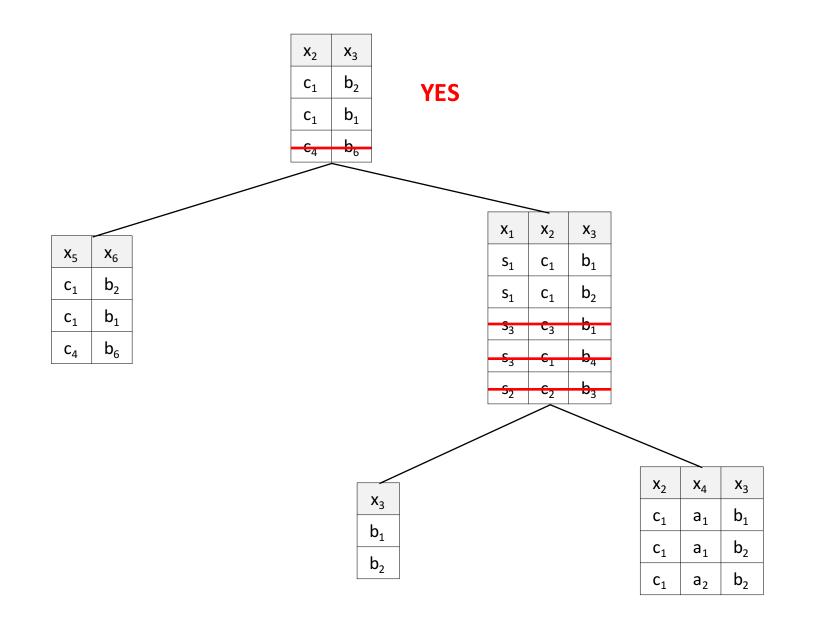












Acyclic CQs: Recap

ACYCLICITY

Input: a query $\mathbf{Q} \in \mathbf{CQ}$

Question: is **Q** acyclic? or is H(**Q**) acyclic?

BQE(ACQ)

Input: a database D, a Boolean query $\mathbf{Q} \in \mathbf{ACQ}$

Question: is Q(D) non-empty?

both problems are feasible in linear time

Query Optimization

Replace a given CQ with one that is much faster to execute

or

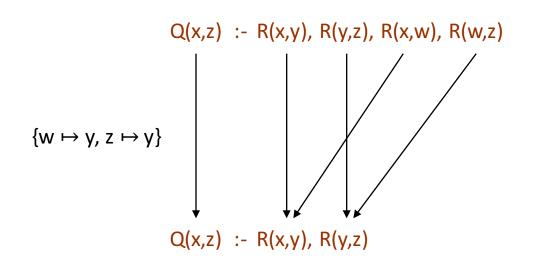
Replace a given CQ with one that falls in a "good" class of CQs

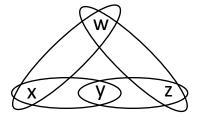
preferably, with an acyclic CQ

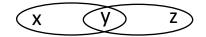
since evaluation is in linear time

Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ Q' such that $Q \equiv Q'$





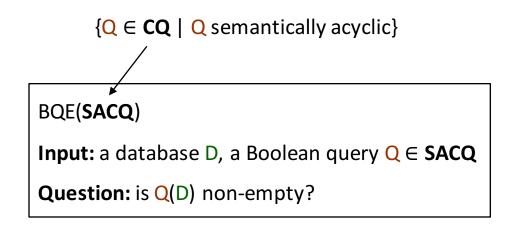


Relevant Algorithmic Tasks

SemACYCLICITY

Input: a query $\mathbf{Q} \in \mathbf{CQ}$

Question: is there an acyclic CQ Q' such that $Q \equiv Q'$?



Checking Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

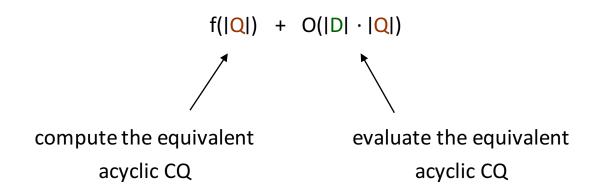
Theorem: SemACYCLICITY is NP-complete

Proof idea (upper bound):

- If Q is semantically acyclic, then there exists an acyclic CQ Q' such that |Q'| ≤ |Q| and Q ≡ Q' (why?)
- Then, we can guess in polynomial time:
 - An acyclic CQ Q' such that $|Q'| \leq |Q|$
 - A mapping h_1 : terms(Q) \rightarrow terms(Q')
 - A mapping h_2 : terms(Q') \rightarrow terms(Q)
- And verify in polynomial time that h_1 is a query homomorphism from Q to Q' (i.e.,

 $Q' \subseteq Q$), and h_2 is a query homomorphism from Q' to Q (i.e., $Q \subseteq Q'$)

Evaluating Semantically Acyclic CQs

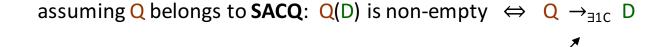


an improvement compare to $|D|^{O(|Q|)}$ for evaluating arbitrary CQs

Theorem: BQE(SACQ) is fixed-parameter tractable

Evaluating Semantically Acyclic CQs

Theorem: BQE(SACQ) is in PTIME



the duplicator has a winning strategy

for the existential 1-cover game,

which can be checked in polynomial time

Semantically Acyclic CQs: Recap

SemACYCLICITY

Input: a query $\mathbf{Q} \in \mathbf{CQ}$

Question: is there an acyclic CQ Q' such that $Q \equiv Q'$?

NP-complete - but no database is involved

BQE(SACQ)

Input: a database D, a Boolean query $\mathbf{Q} \in \mathbf{SACQ}$

Question: is Q(D) non-empty?

in PTIME (combined complexity)

Recap

• "Good" classes of CQs for which query evaluation is tractable - conditions based on the graph or hypergraph of the CQ

• Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs in feasible in linear time (Yannakaki's algorithm)

• Semantic acyclicity - difficult to check, but ensures tractable evaluation